Phase and absorption retrieval using incoherent X-ray sources.
نویسندگان
چکیده
X-ray phase contrast imaging has overcome the limitations of X-ray absorption imaging in many fields. Particular effort has been directed towards developing phase retrieval methods: These reveal quantitative information about a sample, which is a requirement for performing X-ray phase tomography, allows material identification and better distinction between tissue types, etc. Phase retrieval seems impossible with conventional X-ray sources due to their low spatial coherence. In the only previous example where conventional sources have been used, collimators were employed to produce spatially coherent secondary sources. We present a truly incoherent phase retrieval method, which removes the spatial coherence constraints and employs a conventional source without aperturing, collimation, or filtering. This is possible because our technique, based on the pixel edge illumination principle, is neither interferometric nor crystal based. Beams created by an X-ray mask to image the sample are smeared due to the incoherence of the source, yet we show that their displacements can still be measured accurately, obtaining strong phase contrast. Quantitative information is extracted from only two images rather than a sequence as required by several coherent methods. Our technique makes quantitative phase imaging and phase tomography possible in applications where exposure time and radiation dose are critical. The technique employs masks which are currently commercially available with linear dimensions in the tens of centimeters thus allowing for a large field of view. The technique works at high photon energy and thus promises to deliver much safer quantitative phase imaging and phase tomography in the future.
منابع مشابه
Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources
X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics and materials science. For biological tissue samples, polymers or fibre composites, however, the use of conventional X-ray radiography is limited due to their weak absorption. This is resolved at highly brilliant X-ray synchrotron or micro-focus sources by using phase-sensitive imaging methods to improve the cont...
متن کاملIncreased robustness and speed in low-dose phase-contrast tomography with laboratory sources
In this article we discuss three different developments in Edge Illumination (EI) X-ray phase contrast imaging (XPCi), all ultimately aimed at optimising EI computed tomography (CT) for use in different environments, and for different applications. For the purpose of reducing scan times, two approaches are presented; the “reverse projection” acquisition scheme which allows a continuous rotation...
متن کاملA STUDY OF GAMMA RAY EXPOSURE BUILDUP FACTORS IN STRATIFIED SHIELDS FOR POINT ISOTROPIC SOURCES, INCLUDING THE EFFECTS OF INCOHERENT AND COHERENT SCATTERING
The effects of including incoherent (bound-electron) and coherent (Rayleigh) scattering in exposure buildup factor calculations for point isotropic gamma ray sources, penetrating a two-layer water-lead shield have been investigated in the gamma ray energy (E?) range of 40 keV to 3 MeV. Incoherent scattering decreases the values of these factors in both layers up to E? ~ 200 keV and the effect i...
متن کاملPhase imaging using a polychromatic x-ray laboratory source.
We describe a quantitative phase imaging process using an x-ray laboratory-based source with an extremely broad bandwidth spectrum. The thickness of a homogeneous object can be retrieved by using separately spectrally weighted values for the attenuation coefficient and the decrement of the real part of the refractive index. This method is valid for a wide range of object types, including object...
متن کاملNoninterferometric phase-contrast images obtained with incoherent x-ray sources.
We report on what are believed to be the first full-scale images obtained with the coded aperture concept, which uses conventional x-ray sources without the need to collimate/aperture their output. We discuss the differences in the underpinning physical principles with respect to other methods, and explain why these might lead to a more efficient use of the source. In particular, we discuss how...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 35 شماره
صفحات -
تاریخ انتشار 2012